

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Simple toolkit to decode Iridium signals

[image: Build Status] [https://travis-ci.org/TheBiggerGuy/iridium-toolkit]

Installing

User

python setup.py install

Development

virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

Then run commands via a module path. e.g

python -m iridiumtk.bits_to_dfs my_data.voice.dfs my_data.bits
or
python -m iridiumtk.graph_by_type my_data.bits
python -m iridiumtk.graph_voc my_data.bits

Example usage

Either extract some Iridium frames from the air or a file using gr-iridium [https://github.com/muccc/gr-iridium] (recommended) or use the legacy code located in the extractror-python directory if you don’t want to install GNURadio (not recommended).

Is is assumed that the output of the extractor has been written to output.bits. Iridium frames can be decoded with

python2 iridium-parser.py output.bits

if you want to speed up that step you can install pypy and instead run

pypy iridium-parser.py output.bits

Frame extraction

See gr-iridium [https://github.com/muccc/gr-iridium] (recommended) or extractor-python (not recommended) on how to extract Iridium frames from raw data.

Voice Decoding

To listen to voice calls, you will need an AMBE decoder. There are two option:

	Use tnt’s open source AMBE decoder: http://git.osmocom.org/osmo-ir77/tree/codec (git clone http://git.osmocom.org/osmo-ir77)

	Extract an AMBE decoder from a firmware binary. Have a look at the documentation in the ambe_emu/ directory.

The easier option is to use tnt’s AMBE decoder. You can use the extracted decoder if you want to create bit correct output. There almost no audible difference between the two options. Make sure that either ir77_ambe_decode or ambe is in your PATH. Also select the installed one in play-iridium-ambe.

Make sure that the main folder of the toolkit is in your PATH variable: export PATH=$PATH:<this directory>

Steps to decode voice:

	Decode your captured and demodulated bits using iridium-parser and put the result into a file: pypy iridium-parser.py output.bits > output.parsed

	Use stats-voc.py to see streams of captured voice frames: ./stats-voc.py output.parsed

	Click once left and once right to select an area. stats-voc.py will try do decode and play the selected samples using the play-iridium-ambe script.

Frame Format

Partial documentation: http://wiki.muc.ccc.de/iridium:toolkit#frame_format

Main Components

Parser

iridium-parser.py

Takes the demodulated bits and tries to parse them into a readable format.

Supports some different output formats (-o option).

mkkml

mkkml

Converts IRA frames to a kml file to be viewed in google earth.

Run as grep ^IRA output.parsed |perl mkkml tracks > output.kml to display satellite tracks

Run as grep ^IRA output.parsed |perl mkkml heatmap > output.kml to create a heatmap of sat positions and downlink positions

License

Unless otherwise noted in a file, everything here is (c) Sec & schneider and licensed under the 2-Clause BSD License

 This builds an emulated C version of the iridium AMBE codec.

Prerequisites are:

	c54x-objdump

This can be obtained by building binutils with “./configure –target=c54x –program-prefix=c54x”

You can try to use “mk_objdump.sh” which will try to build it for you, assuming you have a compiler installed.

	daram.bin & saram.bin

Program and Data memory of the AMBE codec. These need to be extracted from an Iridium firmware image.

You can try to use “get_binary.sh” which will try to extract it from the TD10003 binary for the 9601 SBD modem.

The firmware image can be downloaded e.g. from: http://www.idgeurope.com/en/support/firmware-support

Legacy Python Iridium frame extractor

This is a legacy implementation written in Python and NumPy.

It is provided for reference reasons. Please use the new
GNURadio based code which can be found at
https://github.com/muccc/gr-iridium

The GNURadio based branch offers better performance with
respect to computational effort and results.

Example usage

Capture with hackrf [https://greatscottgadgets.com/hackrf/] or rad1o [https://rad1o.badge.events.ccc.de/start] and extractor-python

Note: The rad1o has to be in hackrf-mode

hackrf_transfer -f 1625800000 -a 1 -l 40 -g 20 -s 2000000 -r /dev/fd3 3>&1 1>&2 | python2 extractor-python/extractor.py -c 1625800000 -r 2000000 -f hackrf --jobs 2 | fgrep "A:OK" >> output.bits

If you built/installed the rad1o branch of the hackrf tools, add -S 26214400 to the command line like this:

hackrf_transfer -f 1625800000 -a 1 -l 40 -g 20 -s 2000000 -S 26214400 -r /dev/fd3 3>&1 1>&2 | python2 extractor-python/extractor.py -c 1625800000 -r 2000000 -f hackrf --jobs 2 | fgrep "A:OK" >> output.bits

Extracting Iridium packets from raw data

To capture and demodulate Iridium packets use extractor.py. You can either process
a file offline or stream data into the tool.

Command line options:

-o, --offline: Process a file offline

By default, the extractor will drop samples if the computing power available is
not enough to keep up. If you have an already recorded file, use the -o,--offline
option to not drop any samples. In this case the extractor will pause reading the
file (or input stream) until it can process more samples again.

-q: Queue length

The internal queue is filled with samples where the detector has detected activity
in the file. By default it is 12000 elements long (roughly 4 GB at 2 Maps). You can
tweak the length of the queue with this option

-c: Center frequency

The center frequency of the samples data in Hz.

-r: Sample rate

The sample rate of the samples in sps

-f: Input file format

File Format	extractor.py format option
—————————————————-	——————————
complex uint8 (RTLSDR)	rtl
complex int8 (hackrf, rad1o)	hackrf
complex int16 (USRP with specrec from gr-analysis)	sc16
complex float (GNURadio, uhd_rx_cfile)	float

-j, --jobs

The number of processes to spawn which demodulate packets. The detector runs in the main
process.

Main Components

Detector

detector-fft.py

Searches through the file in 1 ms steps to scan for activity
and copies these parts into snippets called <rawfilename>-<timestamp>.det

Cut and Downmix

cut-and-downmix.py

Mixes the signal down to 0 Hz and cuts the beginning to match
the signal exactly. Output is <detfile>-f<frequency>.cut

Demod

demod.py

Does manual DQPSK demodulation of the signal to stdout.
If enabled inside demod.py it also outputs
<cutfile>.peaks (for debugging)
<cutfile>.data the raw bit stream.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

